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Abstract

A viscoplastic consistency condition is incorporated into the traditional viscoplastic rate format with two objectives

in mind: (i) to develop a tangential material operator for rate sensitive behavior similarly to rate independent elasto-

plasticity, and (ii) to make an analytical reference solution available for evaluating the accuracy of new and well-

established computational strategies to integrate the viscoplastic evolution equations.

The viscoplastic tangent operator provides the missing link between rate independent plasticity and rate dependent

viscoplasticity. It also furnishes the acoustic tensor, which is required for localization analysis of discontinuous failure.

Besides the formulation of the viscoplastic tangent operator, we present an analytical reference solution for perfect J2

viscoplasticity. This analytical result is subsequently used to determine the accuracy of simplifying assumptions behind

the algebraic evaluation of the viscoplastic multiplier, and to quantify the error of the radial return mapping strategy for

viscoplastic computations. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the recent years, novel viscoplastic formulations were proposed, which resemble the mathematical
framework of classical elastoplastic ¯ow theory, see Ponthot (1995), Wang et al. (1997), Winnicki et al.
(1998). In view of these advances, rate independent plasticity and damage models readily extend to rate
dependent material behavior. In addition, well-established elastoplastic strategies may be used to integrate
the viscoplastic rate equations based on the algorithmic tangent operator of elastoplasticity (Simo and
Taylor, 1985; Ju, 1990).

In the extended formulation, viscoplastic consistency appears in the form of a di�erential equation,
which needs to be solved for the viscoplastic tangent operator that has been missing so far. Thereby,
viscoplastic consistency plays the key role to establish continuous transition from plasticity to rate de-
pendent viscoplasticity. An exact solution is presented for small strain J2 viscoplasticity together with an
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error analysis of the closest point projection method (CPPM), which corresponds to the radial return
method in case of J2 plasticity. In addition, the localization properties of the Ducker±Prager viscoplasticity
are evaluated for the case of the uniform equibiaxial compression±extension experiment.

2. Consistency of viscoplasticity

The rate dependent ¯ow theory of Bingham solids start from the same assumptions as the ¯ow theory of
elastoplasticity. Decomposition of the total strain rate in an elastic and a viscoplastic component

_e � _ee � _evp �1�
together with the elastic material relation

_r � E : _ee �2�
in which E denotes the elastic material operator and the symbol : indicates a double contraction leads to the
standard form

_r � E : �_eÿ _evp�: �3�
Extending the ¯ow theory of Bingham, the viscoplastic formulation of Perzyna (1966) de®nes a convex
elastic domain int�Er� (Simo and Huges, 1998) in the space of stress and internal variables int�Er� :�
�r; q�jF �r; q� < 0f g, where F is a rate independent function of stress and state variables. In the interior of

Er, only elastic loading±unloading processes take place. While elastoplastic ¯ow is con®ned to the plastic
yield surface, oEr :� �r; q�jF �r; q� � 0f g, viscoplastic ¯ow is associated with states in the exterior of Er.
Thereby, the magnitude of viscoplastic ¯ow is proportional to or a nonlinear function of overstress from
oEr, while the direction of viscoplastic ¯ow is governed by the gradient of the viscoplastic potential
Q � Q�r; q�, i.e.

_evp � hw�F �i
g

m; where m � oQ
or

: �4�

Here, g denotes the viscosity parameter, h i are the McCauley brackets with hxi � 0:5�x� jxj�, w is an
arbitrary dimensionless function of the over-stress, usually of the form w�F � � F =K� �N with K normalizing
the overstress function. If Q � F , the viscoplastic ¯ow is termed associated. As in elastoplasticity, the in-
ternal variables are related to the viscoplastic strain, i.e., q � q�evp�. A scalar format of the internal vari-
ables reduces the isotropic hardening±softening evolution law to _q � H : _evp.

In viscoplasticity, the yield condition F �r; q� > 0 is an inequality, which distinguishes viscoplastic
loading from elastic unloading. There is no restriction on the rate of the yield function, in other words, no
viscoplastic consistency condition restricts the inelastic process to satisfy the yield function F � 0 under
persistent viscoplastic loading. Consequently, a viscoplastic tangent material operator may be constructed
only in an algorithmic sense when implicit integration of the viscoplastic process is considered during a
®nite time step.

2.1. Continuous viscoplasticity

Recently, Ponthot (1995) presented a `continuous' viscoplastic formulation. He introduced a zero-valued
yield condition, �F �r; q; _k� � 0, from which a consistency condition can be derived under persistent visco-
plastic ¯ow when _�F � 0. This extension of traditional elastoplasticity assumes that the ratio of the over-
stress function and the viscosity de®nes the viscoplastic multiplier,
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_k � w�F �
g

such that _evp � _km; �5�

which is controlled by viscoplastic consistency condition. Introducing a rate dependent yield condition in
the format

�F �r; q; _k� � F �r; q� ÿ wÿ1� _kg� � 0; �6�
this corresponds to the usual format in elastoplasticity except for the explicit dependence of the resistance
function on _k. Loading±unloading leads to the consistency condition of viscoplasticity in the form of
_k _�F � 0, which assures that the inelastic process satis®es �F � 0 under persistent viscoplastic ¯ow.

The viscoplastic consistency condition expands into

_�F � �n : _r� �r _k� �s�k � 0; �7�
where

�n � oF
or
; �8�

�r � oF
oq

 
ÿ owÿ1�g _k�

oq

!
h; �9�

�s � ÿ owÿ1�g _k�
o _k

; �10�

In general, wÿ1 � wÿ1�q�, i.e., the inverse over-stress function is also a function of the internal variables,
which in turn are a function of the viscoplastic strain rate and thus are linear in _k.

_q � h�r; q� _k: �11�

2.2. Consistent viscoplasticity

Using a similar argument Wang (1997) included the rate of state variables as an independent state
variable, rendering the viscoplastic yield criterion rate dependent, i.e.,

F̂ � F̂ �r; q; _q� � 0: �12�
As in the previous case, the viscoplastic strain rate follows Eq. (5) and the rate of internal variables Eq. (11).
In this case, the viscoplastic consistency condition expands into

_̂F � n̂ : _r� r̂ _k� ŝ�k � 0; �13�
where

n̂ � oF̂
or
� oF̂

o _q
oh
or
; �14�

r̂ � oF̂
oq

 
� oF̂

o _q
oh
oq

!
h; �15�

ŝ � oF̂
o _q

h: �16�
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Comparing Eqs. (7) and (13), the following di�erential equation holds for both the consistent and the
continuous viscoplastic formulations

_f � n : _r� r _k� s �k � 0; �17�
where n, r and s have slightly di�erent meanings according to the two formulations, with f � �F or f � F̂ .

2.3. Analytical format of the viscoplastic tangent operator

In order to develop an analytical viscoplastic tangent operator, we consider that the solution is known at
the stage t � t0 of the rate-dependent process, which serves as initial condition. The tangential linearization
of the inelastic process is governed by the elasto-viscoplastic di�erential expression

_r � E : �_eÿ _km�; �18�
whereby the auxiliary viscoplastic consistency condition

_f � n : E : _eÿ �n : E : mÿ r� _k� s�k � 0 �19�
ensures continuous satisfaction of f � 0 under persistent viscous deformations.

We simplify Eq. (19) by assigning a � n : E : _e, b � ÿ�n : E : mÿ r� and c � s. Substituting p � _k, Eq.
(19) leads to the ®rst-order di�erential equation

_f � a� bp � c _p � 0: �20�
It should be noted that in general a � a�_e; k�, b � b�k� and c � c�k�, i.e. the coe�cients vary with the vi-
scoplastic process. To extend the analytical treatment, we assume that
· the strain rate is constant, _e � const,
· a is a linear function of _e,
· b and c are constant.
These assumptions hold true for perfect viscoplasticity under constant strain rate conditions. The solution
of the ®rst-order di�erential equation (20)

p � C0 eÿ�b=c�t ÿ a
b

�21�

comprises an exponential decay term of the initial condition and the forcing term for strain control.
Considering that the over-stress at t � t0 is greater than or equal to zero and is related to the viscoplastic

multiplier rate by Eq. (5), the integration constant C0 leads in general to the following expression for the
viscoplastic multiplier:

p � _k � _k0

�
� a

b

�
eÿ�b=c�t ÿ a

b
with _k0 � w�F �0

g
: �22�

The analytical solution of the viscoplastic multiplier _k provides the missing link to develop the viscoplastic
material tangent operator. Following the reasoning of elastoplasticity, the governing constitutive equation
results in

_r � E : _e
�
ÿ _k0

��
� a

b

�
eÿ�b=c�t ÿ a

b

�
m
�
: �23�

7352 A. Carosio et al. / International Journal of Solids and Structures 37 (2000) 7349±7369



Rearranging the terms and substituting the previous expressions for a and b

_r � E : _eÿ E : m
 n : E

n : E : mÿ r
1
ÿ ÿ eÿ�b=c�t�_eÿ _k0E : m

� E : _eÿ �m
 �n

hvp

1
ÿ ÿ eÿ�b=c�t�_eÿ _k0E : m; �24�

where hvp is the viscoplastic modulus

hvp � n : E : mÿ r �25�
and �m, �n are the contractions �m � E : m, �n � n : E. As its de®nition in Eq. (22) shows, _k0 represents the
jump in the initial stress condition. In the case of a smooth viscoplastic strain history, when there is no jump
in the initial condition, i.e. _k0 � 0, we obtain the tangential elasto-viscoplastic constitutive relation

_r � Evp
T : _e with Evp

T � E

"
ÿ �m
 �n

hvp

1
ÿ ÿ eÿ�b=c�t�#; �26�

where Evp
T denotes the viscoplastic tangent material operator. Comparing with the elastoplastic tangent

material operator Eep
T , it is apparent that Evp

T is bounded by the elastic sti�ness E for the instantaneous
response and by the elastoplastic sti�ness Eep

T for the long term response. In other words,

Evp
T !

E for t! 0; g!1;
Eep

T for t!1; g! 0:

�
�27�

In the transient regime, Evp
T varies smoothly between the instantaneous elastic sti�ness E and the elasto-

plastic sti�ness Eep
T according to the exponential function 1ÿ eÿ�b=c�t.

3. Algorithmic viscoplastic tangent operators

In this section, we review several implicit algorithmic viscoplastic material operators for advancing the
solution in a ®nite time step Dt � tn�1 ÿ tn with the objective to compare the main features of the di�erent
tangent operators. In the case of plasticity-like rate dependent formulations, the development of such a
material operator requires the solution of the di�erential format of the consistency equation for the
viscoplastic multiplier.

3.1. Algorithmic tangent of Perzyna viscoplasticity

Aside from the early proposals of gradient-based implicit time marching strategies (Argyris et al., 1981),
Ju (1990) introduces an algorithmic viscoplastic tangent operator in the context of J2-viscoplasticity, which
was extended to other material models (Etse and Willam, 1999). Starting from the Euler±Backward lin-
earization of the di�erential viscoplastic constitutive relations and expressing the incremental stress±strain
relation in terms of the stress residual function, this operator can be expressed as

Ep
T �

dr

de
� Ep ÿ �mp 
 �np

g
~sDt � n : Ep : m

; �28�

where M is the Hessian of the viscoplastic potential M � om=or, �mp and �np represent the tensor con-
tractions �mp � Ep : m and �np � n : Ep, the fourth-order tensor Ep is de®ned as
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Ep � Eÿ1

�
� Dt

g
w�F �M

�ÿ1

; �29�

~s � ow�F �
oF

: �30�

It has to be noted that Ep
T has the same structure as the elastoplastic tangent operator ET with Ep playing

the role of the elastic reference sti�ness E.
It follows that the time-dependent tangent operator Ep

T lead to the elastic operator as the quotient
Dt=g! 0. On the other hand for Dt=g!1, the overstress measure tends to zero w�F � ! 0 and the value
of Ep is unde®ned. In consequence, the viscoplastic tangent operator does not approach the elastoplastic
operator in the limit. In other words, Ep

T is bounded by

Ep
T ! E for Dt! 0; g!1;

undefined for Dt!1; g! 0:

�
�31�

3.2. Algorithmic tangent material operator for continuous viscoplasticity

The introduction of a viscoplastic consistency condition in the framework of continuous or consistent
viscoplasticity allows derivation of algorithmic tangent material operators. However, it is necessary to
introduce an extra assumption concerning the second-order rate of the viscoplastic multiplier in the con-
sistency condition. Truncated Taylor's series expansion in the form of _k � Dk=Dt � const with �k � 0 has
been proposed to eliminate the second derivative in the di�erential equation (17). This assumption is
consistent with algorithmic linearization.

From the linearization of the backward Euler integration of the ¯ow rule Eq. (5) and considering the
time-step n, the viscoplastic strain increment is de®ned as

Devp
n � Dkm �32�

Consequently, the incremental stress±strain relation and the internal variables increment read

Drn � E : De� ÿ Dkm�; �33�

Dq � hDk: �34�
The di�erential format of the continuous viscoplastic consistency condition can be cast as

d �F � n : dr� o �F
oq

dqÿ owÿ1� _kg�
o _k

d _k � 0; �35�

where the di�erential quantities are evaluated taking into account Eqs. (33) and (34), as dr � Em :
�deÿ dDkm�, dq � h dDk� Dkp : Em : �deÿ dDkm� and d _k � dDk=Dt. In those expressions, Em � �Eÿ1�
DkM�ÿ1

and p � oh�r; q�=or. Substituting into Eq. (35) and after some algebra

dDk � �n : Em � Dk �rc p : Em� : de
�hm

vp � �Ei � Dk �Em
p

�36�

in which the following scalar de®nitions have been used
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�hm
vp � n : Em : mÿ h

o �F
oq
; �37�

�Em
p � �rc p : Em : m; �38�
�Ei � ÿ �s

Dt
; �39�

�rc � o �F
oq
: �40�

Substituting Eq. (36) into the tangential stress±strain relation dr � EPh
Tc : de, the operator EPh

Tc is the con-
sistent tangent operator of continuous viscoplasticity

EPh
Tc � Em ÿ �mm 
 �nm

�hm
vp � �Ei � Dk �Em

p

ÿ Dk
�r �mm 
 p : Em

�hm
vp � �Ei � Dk �Em

p

; �41�

where �mm � Em : m, �nm � n : Em.
That is, EPh

Tc is comprised by the fourth order tensor Em degraded by two rate- and step-size dependent
dyadic expansions. For the case Dt! 0, the increment of the viscoplastic multiplier tends to zero
Dk � _kDt! 0, then Em ! E, and as �Ei !1 this results in EPh

Tc ! E. In the other limit when Dt!1, this
leads to the elastoplastic consistent tangent operator EPh

Tc ! Eep
Tc as the rate dependent terms in the de-

nominator and in �r vanish. Then,

EPh
Tc !

E for Dt! 0; g!1;
Eep

Tc for Dt!1; g! 0:

�
�42�

Remark. The original work of Ponthot (1995) did present a ®nite strain version of J2 viscoplasticity model.
In this work, the formulation was extended to a general hardening/softening non-associated viscoplasticity;
however, for small strains.

3.3. Tangent operator of consistent viscoplasticity

In this case, the di�erential viscoplastic consistency condition reads

dF̂ � n : dr� oF̂
oq

dqÿ oF̂
o _q

d _q � 0 �43�

with

d _q � h d _k� _k p : dr � h dDk
Dt
� _k p : Em : �deÿ dDkm�: �44�

Substituting Eq. (44) into the di�erential stress±strain relation together with the previous de®nitions of
dr and dq and rearranging terms leads to

dDk � �n : Em � Dk r̂c p : Em� : de

ĥm
vp � Êi � DkÊm

p

; �45�

where the following scalar de®nitions have been used
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ĥm
vp � n : Em : mÿ h

oF̂
oq
; �46�

Êm
p � r̂c p : Em : m; �47�

Êi � ŝ
Dt
; �48�

r̂c � oF̂
oq
� ŝ

Dt
: �49�

Eq. (45) into the discrete stress±strain relation lead to dr � EWang
Tc : de, where the consistent viscoplasticity

operator EWang
Tc is

EWang
Tc � Em ÿ �mm 
 �nm

ĥm
vp � Êi � DkÊm

p

ÿ Dk
r̂c �mm 
 p : Em

�hm
vp � �Ei � Dk �Em

p

: �50�

The di�erences between Eqs. (41) and (50) are the scalar quantities de®ned in Eqs. (40) and (49). Thus, the
previous observations concerning the limit values of the continuous viscoplasticity operator remain valid
for this case.

Remark. Wang (1997) introduced consistent viscoplasticity in the context of small strain J2 model. As the
expressions presented here rely on general hardening/softening non-associated viscoplasticity, they lead to the
same equations as Wang, when the J2-model is considered.

4. Exact solution of perfect J2 viscoplasticity

The analytical solution of J2 elastoplasticity was presented in a landmark paper by Krieg and Krieg
(1977). The solution for perfectly plastic behavior was subsequently extended by Yoder and Whirley (1984)
to hardening±softening J2-elastoplasticity. In sequel, Loret and Prevost (1986) developed an analytical
solution for hardening Drucker±Prager elastoplasticity.

Given the analytical solution for the viscoplastic multiplier rate in Eq. (22), we are able to obtain an
exact solution for continuous and consistent viscoplasticity problems. In isotropic elasticity, the volumetric
behavior decouples entirely from the deviatoric one, thus the volumetric stress is rvol � 3 K�vol, where K
denotes the elastic bulk modulus and �vol the volumetric strain. The deviatoric behavior is s � 2Ge, where s
and e are the deviatoric stress and strain tensors, respectively, and G is the shear modulus. In J2 visco-
plasticity only the deviatoric behavior is inelastic, i.e. n � m � s, thus we con®ne our attention to the
deviatoric stress±strain rate relation

_s � 2G� _eÿ _ks�; �51�
where the deviatoric viscoplastic strain rate is _evp � _ks. The rate-dependent J2 yield criterion writes in the
case of linear overstress behavior when N � 1

f �s; _k� � 1

2
s : sÿ y2

0

3
1

�
� y0���

3
p g _k

�
� 0; �52�

where y0 denotes the yield stress in uniaxial tension, which is related to the yield strength in shear by
k � y0=

���
3
p

for continuous viscoplasticity. From the previous de®nitions, we ®nd for a � n : E : _e � 2Gs : _e,
and for b � ÿ�n : E : mÿ r� � ÿ2Gs : s� r, and ®nally for c � s � ÿk3g. The solution of the viscoplastic
multiplier Eq. (22) reads then
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_k � a
b

eÿ�b=c�tÿ ÿ 1
� � s : _e

s : s
1
�
ÿ e

ÿ2Gs:s

k3g
t
�
: �53�

Henceforth, Eq. (51) results in the di�erential equation

_s � 2G _eÿ 2G
s : _e

s : s
1
�
ÿ e

ÿ2Gs:s

k3g
t
�

s; �54�

which is a di�erential equation for the deviatoric stress s�t�. It's interesting to note that Eq. (54) di�ers from
the di�erential equation presented by Krieg and Krieg (1977) in the rate-dependent term 1ÿ eÿ�2Gs:s=k3g�t

a�ecting the inelastic deviatoric stress rate term.
Consider a stress state inside the elastic domain de®ned by the viscoplastic yield condition Eq. (52) at

time t � t0. During the time interval Dt � tf ÿ t0, the deviatoric strain increment De � _eDt leads in the case
of viscoplastic loading to the deviatoric stress increment Dse � 2GDe and to a trial stress outside the elastic
domain. Thereby, the stress path reaches the yield surface at the contact point, Dsc, at time tc. During the
inelastic time interval Dti � tf ÿ tc the deviatoric stress evolves according to solution of the di�erential
equation (54), which has two contributions, one drives the stress in the direction of deviatoric strain rate,
and the other one in the direction of deviatoric stress.

4.1. Scalar format of deviatoric di�erential equation

Measuring the magnitude of shear stress in terms of the Westergaard parameter q � ��������
s : s
p � jsj, the

inner product between the ®nal deviatoric stress and the deviatoric strain rate may be written as

s : _e � jsjj _ej cos W � qj _ej cos W; �55�
where W is the angle between s and _e in the interval 0 P W P p. Following the argument of Krieg and Krieg
_e � const:, the time derivative reduces to

d�s : _e�
dt

� _s : _e � _qj _ej cos Wÿ qj _ej _W sin W: �56�

Multiplying the viscoplastic material law equation (51) by _e to develop a scalar format by inner product
operation, and taking into account Eq. (55) and the de®nition of q, we obtain with the help of trigonometric
identities

_s : _e � 2Gj _ej2�sin2�W� � eÿc1q2t cos2�W��; �57�
where c1 � 2G=k3g. Equating this expression with that for _s : _e in Eq. (56)

_q cos W � 2Gj _ej�sin2�W� � eÿc1q
2t cos2�W�� � q _W sin W: �58�

Inner product operation of Eq. (51) with s and substituting s : _s � 2q _q, the scalar form of the shear stress
rate may be expressed as

_q �
���
2
p

Gj _ejeÿc1q
2t cos W: �59�

From Eqs. (58) and (59), the viscoplastic evolution problem may be summarized as a system of two dif-
ferential equations in _q, _W:

_q � c0eÿc1q2t cos W
_W � ÿ c0

q sin W
with q�tc� � qc; W�tc� � Wc; �60�

where c0 � 2Gj _ej.
In sequel, we evaluate the analytical solution of Eq. (60) with the aid of a fourth-order explicit Runge±

Kutta scheme, estimating the accuracy by comparing di�erent time step results. In all cases, the error
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estimator remained below 1� 10ÿ8. Given, the solution Eq. (60) of the shear stress q and the angle W it is
still necessary to reconstruct the deviatoric stress state, which will be discussed in the next section.

Remark. Perfect viscoplasticity introduces a rate dependent hardening±softening e�ect, thus the shear stress
is no longer constant and _q 6� 0 must be considered in Eq. (56). In case of perfect plasticity, this term is zero
and Eq. (56) together with Eq. (57) lead to the di�erential equation in _W presented by Krieg and Krieg (1977).

4.2. Reconstruction of the tensor-valued solution

Multiplying both sides of Eq. (55) by the scalar 2GDti leads to

s : Dstrial � 2qDqtrial cos W; �61�
where Dstrial � 2G _eDti is the deviatoric trial stress increment and Dqtrial � jDstrialj is the corresponding
Westergaard shear increment. Under the assumption of constant strain rate and perfect viscoplasticity,
Loret and Prevost (1986) showed that the solution of Eq. (54) is a linear combination of the form

s � A sc
ÿ � BDstrial

�
; �62�

where A and B are two scalar coe�cients and sc � s0 � Dsc. Applying Eqs. (52), (61) and (62) at the contact
and the ®nal states, the values of A and B may be written in terms of Dqtrial, qc, qf , Wc and Wf as

A � qf sin Wf

qc sin Wc �63�

B � qc sin�Wc ÿWf�
Dqtrial sin Wf

�64�

It is important to note that in case of colinearity between sc and Dstrial, the coe�cients A and B reduce to
simple scaling, where A � qf=qc and B � 0. Also, due to the lack of an analytical form of this solution for
the viscoplastic problem, the coe�cients A and B are presented in terms of W and q instead of the explicit
expression for W developed by Krieg and Krieg (1977). Table 1 summarizes the analytical viscoplastic
solution.

5. Numerical results

This section presents results of the exact analytical reference solution to be compared with the results of
di�erent approximate algorithmic viscoplastic solutions described in the previous sections. We will compare
the exact analytical solution with two algorithmic results for the test case of uniaxial tension of J2 visco-
plasticity in one-dimension and in plane strain. In addition to the study of the accuracy of the calculation,
the localization predictions of the analytical viscoplastic operator are compared with the corresponding
results of the algebraic viscoplastic operator considering simple shear of a Drucker±Prager material.

5.1. Uniaxial viscoplastic response

Fig. 1 shows the uniaxial test problem, the material properties and initial condition considered and the
exact analytical stress history for di�erent strain rates. The ®gure also depicts the uniaxial elastoplastic
response (the rate independent case) for reference purposes. For zero strain rate, the test problem is the
classical relaxation test for which the steady state response coincides with the elastoplastic one. As the
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Table 1

Exact solution scheme for perfect J2 viscoplasticity

· Elastic stress increment se � s0 � Dse

· Check yield condition F �se� > 0, if holds

± Check F �s0� < 0, if holds

* Calculate contact time tc and stress sc by secant method

± else

* Set sc � s0, tc � t0

± Stress measures at contact point

qc � jscj;Wc � arccos
jscjj _ej
jsc : _ej

 !
;Dstrial � 2G_e�tf ÿ tc�

± RK4 solver for qf , Wf in nsub sub-increments:

* Time sub-increment dt � tfÿtc
nsub

* Constants c0 � 2Gj _ej, c1 � 2G
k3g

* Di�erential Functions:

dq�c0; c1; q;W; t� � c0eÿc1qt cos W

dW�c0; c1; q;W; t� � ÿ c0

q
sin W

* for t in �tc; tf ÿ dt� step dt
Calculate:

q1 � dq�c0; c1; qt;Wt; t�; W1 � dW�c0; c1;qt;Wt; t�

q2 � dq�c0; c1; qt � 0:5q1; Wt � 0:5W1; t � 0:5dt�

W2 � dW�c0; c1; qt � 0:5q1; Wt � 0:5W1; t � 0:5dt�

q3 � dq�c0; c1; qt � 0:5q2; Wt � 0:5W2; t � 0:5dt�

W3 � dW�c0; c1; qt � 0:5q2; Wt � 0:5W2; t � 0:5dt�

q4 � dq�c0; c1; qt � q3; Wt �W3; t � dt�

W4 � dW�c0; c1; qt � q3; Wt �W3; t � dt�

qt�dt � qt �
dt
6

q1� � 2q2 � 2q3 � q4�

Wt�dt � Wt � dt
6

W1� � 2W2 � 2W3 �W4�

* Next t

* qf � qt, Wf � Wt

± Linear Combination Factors:

A � qf sin Wf

qc sin Wc B � qc sin�WcÿWf �
qtrial sin Wf

± Final deviatoric stress: sf � A sc � BDstrial� �
· else

± elastic increment or unloading: sf � se
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strain rate increases, the steady state stress response increases also. For the constant viscosity g � 100, the
relaxation time remains constant and the duration of the transient regime does not change.

Fig. 2 compares the exact analytical with the algebraic viscoplastic stress histories for _e � 0:0005. The
algebraic viscoplastic solution was obtained with ®ve increments. In the case of a single time step, the

Fig. 1. Analytical viscoplastic stress histories in uniaxial tension (g � 100).

Fig. 2. Analytical and algorithmic viscoplastic stress histories in uniaxial tension for _� � 0:0005 and g � 100.
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algebraic solution would coincide with the exact steady state solution, and as the number of time steps were
increased, the di�erences in the transient regime would become smaller. In summary, there is no di�erence
between the predictions of both the analytical and the algebraic solutions of the steady state response. On
the other hand, the error in the transient regime diminishes with decreasing step size.

5.2. Error analysis of J2 viscoplastic response in plane strain

Fig. 3 depicts the test setup and the axial load±displacement response using the exact analytical solution
of continuous viscoplasticity for constant strain rate conditions in two-dimensional plane strain. For these
numerical simulations, the material properties were E � 23540 MPa, m � 0:3 and the static yield strength of
14:71 MPa. All plots were obtained for the time interval 06 t6 8:5� 10ÿ4 s using 85 equal time-steps
Dt � 1:0� 10ÿ5 s. As the viscosity g increases, the steady state result of the viscoplastic solution also in-
creases. For comparison, the rate independent elastoplastic solution is shown together with the algebraic
CPPM viscoplastic solution for g � 10,000. The error of the CPPM solution is, however, small both in the
transient as well as in the steady state regime, when we consider the global response prediction. Thus, the
question arises what the local errors are at the transition point from elastic to viscoplastic behavior and
what the local errors are at steady state.

The error induced by the CPPM and the consistent linearization assumption _k � Dk=Dt � const: is
described by two error indicators. The ®rst of them is the angle between the exact and the algebraic
solutions, given by

Fig. 3. Uniaxial compression test in plane strain: load±displacement diagrams.
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Werr � cosÿ1 sE : sA

jsEjjsAj
� �

: �65�

The second one is the di�erence between the normalized shear stress parameters

El � 1ÿ qA

qE
: �66�

In these expressions, the superscripts A and E indicate algebraic and exact-analytical, respectively. The
solution in the deviatoric plane can be described by its components in the direction of the normal N
(normal direction) and the tangent to the yield surface T (tangential direction).

Figs. 4±9 present error maps of shear stress and angular distortions in the domain �N ;T� 2 �0; 5q�; �0; 5q�
at the two stages of analysis shown in Fig. 3 for g � 100 and g � 10,000. The angular elastoplastic error at
the initial yield point and at the steady state response point does not show any signi®cant di�erences and
agrees with previous results (Krieg and Krieg, 1977). In the transition regime, we observe that the peak
angular error does not vary signi®cantly with the viscosity g, in fact, it is approximately 50% of the
maximum elastoplastic angular error. As the viscosity parameter grows, the error maps are getting

Fig. 4. Isoerror maps of shear magnitude and shear direction: elasto-plastic radial return solution at transition point.

Fig. 5. Isoerror maps of shear magnitude and shear direction: continuous viscoplasticity radial return solution for viscosity g � 100 at

transition point.
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Fig. 6. Isoerror maps of shear magnitude and shear direction: continuous viscoplasticity radial return solution for viscosity g � 10,000

at transition point.

Fig. 7. Isoerror maps of shear magnitude and shear direction: elasto-plastic radial return solution at steady state.

Fig. 8. Isoerror maps of shear magnitude and shear direction: continuous viscoplasticity radial return solution for viscosity g � 100 at

steady state.
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smoother. On the other hand, the shear stress error has the same general shape in all cases, it decreases as
the rate dependency increases. This could be explained by the fact that both solutions have the same
asymptotic limit, namely the elastic response for g!1.

In the steady state regime, the maximum of the angular error is also constant, but there is no big dif-
ference in the shape of the isoerror map for the viscosities considered here. Another di�erence with the
transient regime is that the shear stress error has almost the same maximum showing little deviation in the
shape of the isoerror map. Despite the di�erences between steady state and transient regimes, the elasto-
plastic and viscoplastic isoerror maps clearly show that the in¯uence of the assumption _k � Dk=Dt � const:
is negligible for all practical purposes. Moreover, the use of the viscoplastic CPPM diminishes the maxi-
mum shear stress error as much as 50% over the corresponding elastoplastic error.

The same error analysis is performed for classical Perzyna viscoplasticity. The constitutive integration of
this model involves minimization of a stress or overstress function residuum. In this work, the latter
strategy has been used. Figs. 10 and 11 show the angular and shear stress isoerror maps in the same �N ;T�
domain as in the previous case. The angular isoerror map is similar in shape as the one obtained for the
elastoplastic CPPM, with a maximum error, which is about twice of that of the consistent viscoplasticity

Fig. 9. Isoerror maps of shear magnitude and shear direction: consistent viscoplasticity radial return solution for viscosity g � 10,000

at steady state.

Fig. 10. Isoerror maps of shear magnitude and shear direction: classical viscoplasticity solution for viscosity g � 10,000 at transition

point.
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CPPM. Also, there is no signi®cant di�erence between the error in the transient and in the steady state
regime. The shear stress error remains of the same order as that of elastoplasticity and consistent visco-
plasticity using CPPM.

5.3. Localization of Drucker±Prager viscoplasticity

In order to compare the predictions of the localized failure modes of the analytical and the algebraic
viscoplastic tangent operators, we perform a simple shear test at the material level in the form of an equ-
ibiaxial compression-extension experiment. Fig. 12 shows the load±displacement plots for rate-independent

Fig. 11. Isoerror maps of shear magnitude and shear direction: classical viscoplasticity solution for viscosity g � 10,000 at steady state.

Fig. 12. Elastoplastic and continuous viscoplastic response under simple shear: nominal stress±strain diagram.
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elastoplastic material behavior and for continuous viscoplasticity for di�erent viscosity values g � 400,
1000 and 10,000. The ®gure summarizes the elastic and viscous softening properties considered and illus-
trates the e�ect of increasing viscosity on the strain softening response in simple shear.

Localization analysis of elastoplastic materials has been discussed extensively by Rudnicki and Rice
(1975) and Ortiz et al. (1987), Runesson et al. (1991), Simo et al. (1993) among others. Its extension to
viscoplastic behavior was examined by Needleman (1988), Loret and Prevost (1990), Willam et al. (1994),
and recently by Etse and Willam (1999). Here, we adopt the normalized determinant of the tangent acoustic
tensor det�Qvp�= det�Q� as a localization indicator. Thereby, the acoustic tensor is de®ned as Q � ~N E~N ,
where ~N is the polarization vector, characterized by the angle h between ~N and the coordinate axis �~1.
Wave dispersion analysis (Sluys, 1992; Wang, 1997) constitutes a widely used alternative to the acoustic
tensor analysis performed in this work.

Fig. 13 shows the localization predictions of the classical Perzyna viscoplastic tangent operator given by
Eq. (28) at the point of transition from elasticity to viscoplasticity for the viscosity values in Fig. 12. We
observe that for di�erent values of g, the localization diagrams maintain the critical localization directions
hcr � 40� and hcr � 140� of the elastoplastic operator. However, the material deterioration increases as the
rate dependence diminishes (compare the plots for g � 10,000 and g � 1000). In contrast, close to the
elastoplastic response, the lack of an asymptotic bound of the material operator leads to meaningless lo-
calization predictions (g � 400).

On the other hand, the localization diagrams of the algebraic viscoplastic tangent operator (Eq. (41))
shown in Fig. 14 exhibits smooth transition between the two limiting cases of elasticity and elastoplasticity.
For comparison, Fig. 15 exhibits the localization predictions of the analytical viscoplastic tangent operator.
The localization diagram shows the same critical direction hcr � 40° as the previous algebraic tangent
operator, but the degradation of the analytical tangent operator is far greater than that of the algebraic
viscoplastic tangent operator. However, this large discrepancy diminishes for increasing values of the
viscosity g, when both solutions are in¯uenced more by the in common elastic contribution.

Fig. 13. Classical Perzyna viscoplasticity localization indicator for g � 10,000, g � 1000 and g � 400.
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Fig. 14. Algebraic continuous viscoplasticity localization indicator for g � 10,000, g � 1000 and g � 400.

Fig. 15. Analytical viscoplasticity localization indicator for g � 10,000, g � 1000 and g � 400.
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6. Conclusions

The results in this paper support the following conclusions:
(1) From the viscoplastic consistency condition de®ned by the plasticity-like rate dependent formula-
tions, a di�erential tangential tensor can be obtained, which di�ers from the algorithmic operators de-
®ned so far.
(2) The assumption _k � Dk=Dt � const: introduces errors of the same order of magnitude as the approx-
imate algebraic constitutive integration strategy. In other terms, the algebraic approximation of �k � 0 in
the viscoplastic multiplier introduces an error of the same order of magnitude as elastoplasticity, where
the CPPM is widely used.
(3) The analytical viscoplastic tangent operator provides a smooth transition between the limiting cases
of elastic and elastoplastic behavior. Also, the localization indicator predicts the same critical directions
as the elastoplastic case and the algebraic viscoplastic tangent operator. However, the degradation of the
localization indicator is signi®cantly greater when the properties of the analytical acoustic tensor are
compared with the corresponding algebraic operator.
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